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The bifurcation of the unstable periodic orbits in bounded and 
unbounded three-disk billiards 
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Depamnent of Applied Physics, Tokyo Institute of Technology, Oh-okayama, 2-12-10, 
Meguro, 152. Tokyo, Japan 

Received 18 F e b m q  1994, in final form 5 May 1994 

Abstract. The bifurcation of unstable periodic orbits (ums) in bounded and unbounded billiards 
are investigated. The billiard systems studied in this paper wnsist of three disks and have Cs, 
symmetry. It is found numedcally that h e  systems have essentially hvo different types of 
bifurcation for changing the stlucture of the upas. The first type of bifurcation is caused by 
the tangential collision of the bajectory with a convex boundary segment. The seeond type of 
bifrucation is caused by the collision of the trajectory wilh a vertex point, where two smooth 
boundary segments meet at a finite angle. The v e m  points on the boundary play the c e n w  
geometrical role of organizing the UPOS in these billiard systems 

1. Introduction 

In recent years, increasing efforts have been made to understand the organization of unstable 
periodic orbits (UPOS) in classical chaotic systems [l]. The importance of ums is very clear 
when we remember that the u p o s  of a classical system serve as the bone shucture of the 
flow in phase space. 

Mathematically, if the system is hyperbolic, many important characteristic quantities, 
including the Hausdorff dimension of the invariant set, the Lyapunov exponent and the decay 
rate of the correlation function, can be calculated from information on the UPOs alone by 
using Ruelle’s dynamical zeta function [2]. Furthermore, the bone structure built by upos 
essentially governs the dynamics of not only the classical system but also the corresponding 
quantum system through the classical-quantum correspondence principle. Nowadays, this 
is very apparent from the success of the semiclassical quantization theory developed by 
Gutzwiller [3] which enables us to calculate the quantum energy levels from the classical 
ums. 

In order to clearly understand the bone structure woven by the UPOS, many idealized 
hyperbolic systems have been investigated. These include the cat map [4]. the baker map [5 ] ,  
the three-disk system [6-91 and so on. Among these idealized systems, the threedisk system 
is the most suitable for our study towards a clearer understanding of the classical-quantum 
correspondence in chaotic systems, since this system does not have the number-theoretic 
anomalies which are observed in other systems such as the cat map. Accordingly, we 
choose the three-disk system as OUI model system and study, in this paper, the symbolic 
dynamics of the system which is the essence of the classical dynamics necessary for the 
semiclassical quantization. In particular, we concentrate our attention on the change in 
symbolic dynamics and its implication to the corresponding quantum dynamics when a 
system parameter is varied. 

03054i70/94/144791t13$19..50 @ 1994 IOP Publishing Ltd 4191 
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This paper is organized in the following way. In section 2, two mathematical tools, 
which are used later, are explained. One is the symmetry reduction, which gives us a 
simplified description of a system that has some symmetry and the other is Birkhoffs 
method for locating many-periodic orbits. In section 3, after the symbolic dynamics for 
the threedisk billiards with Cfv symmetry is introduced, the bifurcation of the UPOS when 
the system parameter is varied is investigated for the unbounded three-disk billiards. In 
section 4, the bifurcation of upos is investigated for the bounded three-disk billiards and a 
new type of bifurcation is found. Furthermore, the change in the contribution of the UPOS 
to the zeta functions alters in these bifurcation processes is revealed. Finally, in section 5, 
we summarize the results obtained in this paper. 

2. Methods 

Let us explain our three-disk system. It consists of three disks of equal radius a located 
apart from each other by the same interdisk distance R and has the discrete symmetry CsV 
(see figure 1). In addition to this geometrical symmetry, the dynamics of the system also 
has a kinematic symmetry in the time evolution, which will be explained below and in the 
appendix. (i) The former symmetry enables us to perform so-called symmetry reduction to 
contract the phase-space without loss of information. (ii) The latter symmetry allows us to 
use Birkhoffs method of symmetry lines to easily locate manyperiodic orbits [IO, 111. 

$2 

(4) 

Figure 1. The model systems. (a) Unbounded &disk system The system paramefer is 
the interdisk distance R (R > 2).  The ndius U is fixed at I .  (b)  Bounded h e d i s k  system 
B = m / 3 ,  The system p m e t t c r  1 for 0 C I C 1 is related to the curvature of the disks, since 
L is fixed at 1. 

Thanks to the symmetry reduction, we choose the symmetry lines instead of the usual 
boundary surfaces on the disks as a Poincare section [ I  11. All symmetry lines are identified 
as a single Poincare section P (symmetry reduction). A trajectory consists of a finite or 
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an infinite number of straight-line segments, which are called paths, between successive 
collisions on the disk boundaries. At the crossing point of the trajectory on the Poincar6 
section, the location in phasespace is specified by a pair of variables (r, cos @) where r 
is the one-dimensional coordinate along the symmetry line and @ is the angle between the 
direction of the trajectory and that of the symmetry line. Let T denote the return map on 
the Poincar6 section P;  the phase point ( r ,  cos @) E P at a crossing point is mapped to the 
phase point T(r ,  cos@) = (r', cos@') E P at the next crossing point. 

Next, we apply Birkhoffs method of symmetry lines to our system in order to find 
many-periodic orbits in the system. Birkhoffs method requires that the timeevolution 
operator T is represented as the product of two involution operators ZO and ZI , namely 

T = Z, o Zo (1) 

and 

where e is the identity (see appendix and [lo]). When a system has C a  symmetry, the two 
operators ZO and ZI defined by 

Zo(r,cos@) = (r, -cos@) (3) 

and 

Z i  = T o Zo (4) 

satisfy the above requirement [ 1 I]. Using these operators, we define the symmetry line 'I?.,,, 
which is the invariant set after a time evolution of n steps following the operation ZO, by 

R, {T E?;  T" o ZOT = T )  (5) 

for any integer n .  These sets R, can be obtained very easily in our numerical calculation 
due to the non-trivial relations 

Rz, = T"% (6) 

which are derived in the appendix for the reader's convenience. Finally, Birkhoff s argument 
tells us that the intersection Rm n R,, includes (usually, a large number of) periodic points 
with period Im -nl, although some periodic points with the same period cannot be captured 
by the method in general. 

3. Unbounded systems 

Let the radius a of the disks be fixed at 1 and let the interdisk distance R as the system 
parameter vary. First, we consider the case for R > 2. In this case, the system is called 
unbounded since some trajectories escape to infinity. 

Let us visualize Smale's horseshoe dynamics for the unbounded three-disk system 
(figure ?.(a)). Since our final concern is the structure of the WOS, there is no need to 
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inspect escape trajectories. Accordingly, we take the set of all trajectories which run from 
the hatched part of the boundary of a disk to that of another disk in figure l(a) as the 
initial set no c P of trajectories for time evolution. (Other trajectories escape eventually.) 
The n-times iterated set n. is defined by n, = P i l o .  In figure 2, we depict il. for 
n = -2, -LO, 1,2. The set i l l  consists of two connected components, which are stripes 
stretched along the expanding direction and shrunk along the contracting direction. We 
remark that each connected component transversally intersects the initial set no along the 
expanding direction. Consequently, for any large positive n,  the n-times iterated set n, 
transversally intersects no again. The same argument also holds for the transversality of 
n. (n < 0) along the contracting direction. Thus, for m < 0 and n =- 0, any connected 
component of n, and any connected component of n. have a non-empty intersection. The 
horseshoe dynamics which satisfies this condition is called complete. It can be proved that 
the condition is equivalent to the grammar of the symbolic dynamics imposing no restriction 
on the Markov chain. The horseshoe dynamics which is not complete is called incomplete. 

Figure 2. The fonvard and bachard time evolution of the initial set il,, for the unbounded 
system. The set n. is the timeevolved set at the time step n. The initial set no is enclosed by 
the full CUNC. ( U )  R = 3.0. llns are drawn for n = -2, -1.0. 1.2. n-2 and i l z  are hatched 
with horizontal and vertical lines, respectively. (b)  R = 2.048. n.s are drawn for n = -1.0.1. 
n-1 and I l l  are hatched with hanrontal and vertical lines, respectively. The dotted area stands 
for the unphysical region cut off by the eclipse. 

As is seen in figure 2(u), after a time evolution of one step, the initial set no, which 
is connected, splits into two connected components of I l l .  Let these two components of 
n, be labelled by the symbols 0 and 1. The component labelled by 0 corresponds to the 
set of trajectories which reach, after a time evolution of one step, the same symmetry line 
from which the trajectories started at the initial time. On the other hand, the trajectories 
corresponding to the component labelled by 1 cross a different symmetry line. When the 
time evolution advances one step further, each component SI E (0, 1) of n1 splits again 
into two connected components s10 and SI 1 of n,. By repeating this procedure, each of the 
2" connected components of the n-times iterated set n. is labelled by a symbol sequence 
sIs2.. . s. E (0, 1)". The same procedure is also applied for the backward time evolution 
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to the past. For m < 0, a connected component of the m-iterated set n, is labelled by 
s, . . . s-2s-I E (0.1)'". Now, the intersection between the above two components of n, 
and II, is a small rectangle labelled by s, . . .s-~s-I , ~ 1 s ~ .  . . s,, where '.' represents the 
origin of time. We can prove that the intersection shrinks to a point in the limit m -+ -CO 

and n + CO. Consequently, each trajectory in the original dynamics corresponds to a 
unique bi-infinite symbol sequence. In this way, the symbolic dynamics is constructed. For 
R > Rcl = 4/& = 2.309401.. . , any path connecting two disks in the previous sense 
cannot be obstructed by the third disk; namely, an eclipse never occurst. 

Let us decrease the interdisk distance R to observe the bifurcation process. In figure 2(b), 
n. (n = -1.0, 1) for R = 2.048 are depicted in the same way as before. We notice that 
each component of il. in figure 2(b) is fatter and has a rounder boundary curve compared 
with those in figure 2(a). Furthermore, the transversality for n,s breaks down in figure 2(b) 
as explained below. Thus, the horseshoe dynamics is now incomplete. The breakdown 
of the transversality is easily understood by drawing the cut-off boundary for physically- 
realizable trajectories in P. The cut-off boundary in P corresponds to the trajectories which 
start from initial disks and tangentially touch other disks at the next collision after 1 step 
when the trajectories have evolved either forward or backward in time. (The appearance 
of such a cut-off boundary was studied in an 'abstract' scattering problem by Troll [13].) 
Accordingly, in figure 2(b), the dotted area in the left-hand side of the cut-off boundary 
corresponds to the unphysical trajectories which are obstructed by the eclipse by the third 
disk before reaching the destination disk. Of course, the symbol sequences corresponding 
to these unphysical trajectories are naturally unallowed. Since we are interested in physical 
u p o s  and the unphysical area on P created by the eclipse may not contain any upos, 
a further detailed investigation to judge whether some original wos become unallowed 
in figure 2(b) is required. Consequently, we need a further detailed investigation to judge 
whether some UPOS are pruned in figure 2(b). Actually, it was found by Hansen [ 141 that by 
calculating when the outermost homoclinic point crosses the time-evolved cut-off boundary 
by some steps, unallowed symbol sequences appear when R 6 RR = 2.048214 19.. . . 
Such a system having unallowed symbol sequences is called pruned. We now know that 
our system is pruned since R = 2.048. 

In order to visualize how the periodic orbits in P move and disappear when R is 
changed, we draw symmetry lines R, on P in figure 3; (a)+) and (d) - (e )  correspond to 
R = 2.03 and 2.01, respectively. In figure 3(a), RI has two branches. One branch includes 
the fixed point of the map T corresponding to the symbol sequence . . . 0000 .. . = 5. (The 
overbar a b . .  . z stands for the infinite repetition ... a b . .  . zab . .  . z . .  ..) The other branch 
includes the fixed point of T corresponding to the symbol sequence 7. We denote the 
former branch as R; and the latter branch as R;. We also denote the iterated sets of Ry 
and R; as Rb,,, = T"Ry and K+l = T"'R;, respectively, and the union of the two sets 
as '&,,+I = q+l U %+, (see equation (7)). Remember that the crossing point between 
two symmetry lines is a periodic point. 

Note what happens to the crossing points between the symmetry lines when the system 
parameter R is changed. The same symmetry lines are drawn in the area close to the cut-off 
boundary in figures 3(b) and (d ) ,  which correspond to R = 2.03 and 2.01, respectively. We 
notice that several crossing points, marked by the star in (b), disappear in ( d )  since each 
symmetry line in (b )  is scraped in ( d )  by the unphysical area to become shorter and unable 
to have a crossing point with another symmetry line. This is one way for the crossing 

- 

t When this condition is satisfied, it is mathematically proved thaI the correspondence between the subshift of 
finite type on the symbol sequences and the original dynamics for nongwping trajectories is perfez1 and the 
topological entropy for the original dynamics surely exists [12]. 
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points to disappear in the parameter change. There is another way for the crossing points to 
disappear. In figures 3(c) and ( e ) ,  some symmetry lines in another area are drawn similarly 
for R = 2.03 and 2.01, respectively. In these figures, several symmetry lines are folded 
back at the wedge-shaped corners. We observe that when R is changed, these wedges move 
and some of them lose the crossing points with other transversal symmetry lines. See the 
crossing points marked with a star in ( c ) .  These two ways for crossing points (i.e. periodic 
points) to disappear in the parameter change originate from a common mechanism; the 
tangential touch of an orbit with the boundary of an obstructive disk. Accordingly, we call 
this bifurcation mechanism tangential-type bifurcdion. The periodic points near the cut- 
off boundary in figure 3(b) no longer exist in figure 3(d).  This means that the horseshoe 
is scraped by the cut-off boundary in figure 3(d). By exploring the symbol sequences 
corresponding to the periodic points on the straight l i e  cos 4 = 0 which are scraped in the 
process, we can find the ordering rule for symbol sequences, of the form 10"1 with n 2 1, 
to disappear in the process; a symbol sequence 1W1 with larger n disappears earlier. On the 
other hand, a consideration based upon the symmetry of the system and the correspondence 
between the Poincar6 section and the space of symbol sequences tells us that the above 
family contains the symbol sequence pruned earliest in the process. Consequently, the first 
symbol sequence which becomes forbidden in the process is . . . 001.100.. .. This symbol 
sequence corresponds to the left-outermost homoclinic point on the Poincar6 section which 
originates from the fixed point 0. 

- 

4. Bounded systems 

Bounded threedisk billiard systems have been studied by several authors [14,15]. In order 
to understand the mechanism of pruning in bounded systems, we continue to study the 
same three-disk system for R < 2. First, we introduce a new variable t to replace R as 
the system parameter. The variable f is defined in such a way that the centre angle of each 
arc in figure l ( b )  is t n / 3  (0 < t < 1) .  For t = 0, the shape of our billiard becomes an 
equilateral triangle and its dynamics becomes integrable. For t = 1, each pair of two arcs 
meet tangentially at the vertex. As explained before, our system now has pruned symbolic 
dynamics. In figure 4, the time evolution of the symmetry lines is again depicted for two 
parameters f = 1 and t = 0.3. We observe that the periodic points disappear according 
to tangential-type bifurcation. Furthermore, we find another new bifurcation mechanism to 
erase periodic points which exists only when the system is hounded. When t decreases, a 
u p 0  falls into a vertex to disappear (figure 5(61)4b3)). We call this type of bifurcation 
vertex-type bifurcation. In general, if a system has a vertex point then this new bifurcation 
mechanism can take place in the system. 

Next we show how the stability of the UPOS changes in the bifurcation processes. We 
define the stretching factor A as A I det (M - 1)1 where A4 is the one-turn linearized 
Poincar6 map around the upos. Roughly speaking, A is the amplification factor of a small 
initial deviation from the UP0 after one turn. The stretching factor A of the upos (together 
with their action and period) is the essential quantity needed to characterize the classical 
dynamics and the semiclassical quantum dynamics. The classical and the semiclassical zeta 
functions are constructed from these quantities [2,3] (to be precise, the semiclassical zeta 
functions require one more quantity, i.e. Maslov index.) 

First, let us investigate the change in the stretching factor A of UPOS in tangential-type 
bifurcations. As found by Hansen [14], when a UP0 disappears at a bifurcation point due to a 
tangential-type bifurcation, an infinite number of upos disappear simultaneously at the same 
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Pigum 4. The forward and backward time evolution of the symmerry lines R, on the Poincn16 
section for the bounded system. (a) t = 1.0, R. for In1 < 5:  (b)  t = 0.3. R, for In1 < 5. In ( 0 )  

and (b). only %E for n = 0.1,2,3 are indicated. The shapes of the billiards for the parameters 
me shown in (d)  and (g) respectively. In (d),  the arcs meef tangentially nt vertices. 

point. These UPOS form a family. The change in the stretching factor A as a function of the 
system parameter r is shown in figure 6(u) for two UPOS in the same family. In the figure, 
the vertical axis represents the inverse of A in log scale, since A-' (A-'/*) and its integer 
powers appear as the weighting factors of UPOS in the Ruelle zeta function (Gutzwiller zeta 
function). We find that when the parameter f changes, the up0 labelled 10001101 shows a 
slow change and the inverse of the stretching factor A remains at a finite value just before 
the bifurcation point although the W O  itself disappears abruptly at this point. Thus, the 
contribution of the present UP0 has a discontinuous change at the bifurcation point. On 
the other hand, in figure 6(a), another up0 labelled 100001100 becomes more and more 
stable as the parameter f approaches the bifurcation point. At the bifurcation point, A 
diverges and the weight factor A-' of the zeta functions vanishes. Namely, the transition 
is continuous. Consequently, discontinuous and continuous transitions coexist in the family 
of UPOS belonging to the same tangential-type bifurcation. 

Furthermore, it is numerically confirmed that for any family of UPOS in the above sense, 
there exists only one UP0 which exhibits a discontinuous transition and all the other infinite 
number of UPOS exhibit continuous transitions. Thus. the single UPO whose A-' does not 
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4-44 l d i l  

Figure 5. The bifurcations of UPOS in the bounded system when the system parameter f is 
varied. (How the contribution of these UPOS to the zeta functions changes in the bifurcation 
process is depicted in figure 6.) (a lHa3)  tangential-type bifurcation exhibiting-uous 
transition. The up0 which is self-retiacing corresponds to the symbol sequence 10001101. The 
parameter values are t = 0.9,0.6116.0.595, respectively; (a'lHd3) tangential-type bifurcation 
exhibiting continuous transition. Similarly. for 100001 100 and I = 0.9.0.6176.0.58. The u w s  
in (a) and (a') belong lo the sane family to disappem simultaoeousiy. lust on the bifurcrdion 
point (a'Z). the present ums degenente with the n o s  in (a);  ( b l H b 3 )  vertpx-type bifurcation. 
Similarly, for 100000011 and t = 0.9.0.652.0.58. 

vanish at the bifurcation point completely dominates the change in the contribution to the 
zeta function from the whole family. 

Second, the change in A-' is calculated for the vertex-type bifurcation (figure 6(b)). 
Clearly, the upos exhibits a discontinuous transition. In our numerical experiments, all of 
the vertex-type bifurcations exhibit a discontinuous transition with no exceptions. 
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Figure 6. The change of the A-l  for the ums the same bifurwtions shown in figure 5 when 
the system parameter t is varied. (A is the stretching factor of the u w s  and A-' represents the 
weight factor of the uws to contribute to the Zera functions.) (a) Thewngentialrype bifurcation. 
Two um in the same family correspond to the symbol sequences 1WO1101 and 100001100. 
The contribution of the former n o s  to the zeta functions exhibits the discontinuous transition, 
whereas that of the latter exhibits the wntinuous Vansition. (It is found numerically that when 
a self-retncing uw shows tangential-type bifurcation, the transition is always discontinuous.) 
(b)  The vertex-type bifurcation. The upos correspond to the symbol sequence lWOOOOl1. The 
transition is discontinuous. (It is found numerically that any vertex-type bifurcation exhibits the 
discontinuous transition.) 

- 

5. Summary 

We have reported the following two discoveries in the present paper: (if there exists a 
new pruning mechanism for UPOS due to a vertex for bounded billiard systems; and (ii) the 
UPOS which are pruned at the same bifurcation point through a tangential-type bifurcation 
are classified into two categories. The first category consists of a single up0 whose A-' 
remains finite at the bifurcation point, whereas the second category consists of an infinite 
number of UPOS for which the A-' vanish at this point. A further study on the influence of 
the bhrcations on the zeta functions will be reported elsewhere [16]. 
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Appendix. BirkhofPs method for finding periodic orbits 

In this appendix, we explain Birkhoff s method for finding periodic orbits and derive the 
non-trivial relations (6) and (7) in section 2. Birkhoffs method is a way of determining 
the location of periodic orbits in the Poincark section for a system which has some discrete 
symmetry [lo, 1 I]. The required symmetry is that the discrete time evolution T (i.e. Poincark 
map) is given as the product of two involutions 

T = Z ,  o Zo (A.1) 

where 

l o  o ZO = Z l  o 11 = e (A.2) 

and e is the identity. 
For billiard systems, if we take the velocity reverse operation as ZO, which is obviously 

an involution, it can be proved that the operator Z i 7  defined by Z l  = T o lo ,  is also an 
involution. 

lo particular, for two-dimensional billiards, the above statement is proved easily as 
follows. The dynamics for these systems can be represented in the so-called Birkhoff 
coordinates (r, sin p) at the impact point on the boundary where r is the coordinate along 
the boundary and p is the angle between the outgoing direction and the normal vector at 
the impact point. Accordingly, these variables take values in the range 

0 < r < r,, (A.3) I (r, sinp) - 5" < p < $I 

where r,, is the perimeter of the boundary. In this representation, the velocity reverse 
operation ZO is expressed as 

Zo : (r, sinp) H (r,sin(-'p)). (A.4) 

Suppose that a point (r,  sinp) in phase-space is mapped to (r', sinp') and (r", sinp") by 
the Poincar6 map T and its inverse T-I, respectively. Then ZI T o  ZO is calculated as 

Z I  (r ,  sin p) T o Zo(r, sin p) 
= T(r,  sin(-p)) 
= (r", sin-p")). 

By using (A.5), we now know that I ,  is an involution 

ZI o Zl(r, sin (4) = T o ZO o T o Zo(r, sin 'p) 

= T o Zo(r", sin(-p")) 

= T(r", sin@")) 
= (r, sin p), 

Finally, we will prove the non-trivial relations (6) and (7) used in section 2. We begin 
by extending the definition of Z j  to Zj for any j E Z 

Ij 5 T j  o Io. (A.7) 
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By using (A.1) and (A.2), it is easily shown that l j  is also an involution 

Ij  o I j  = e .  (A.8) 

Let us consider the algebra generated by the operator product on the set { T k :  k E Z ) U { l / ;  j E 
2). The set is closed under the product and becomes a goup by itself, since 

(A.% 

(A.10) 

(A.ll)  

These relations are obtained by using (A.l), (A.2), (A.7) and (A.8). We define the set of 
fixed points of the involution Ij as 

Rj { r  E P ;  Z j r  = r) .  (A.12) 

By using (A.7)qA.l l) ,  we get the following two relations: 

T"Rk %+k 

= R?,-k .  

(A.13) 

(A.14) 

The derivations of (A.13) and (A.14) are as follows. 

T E R&+k CJ'r = I&+kT ((A.12) is used) 

= T" o Ik o T-'% 

0 T-"T = Ik 0 (T-"T) 

CJ T-"T E Rk 

((A.9) and (A.ll) are used) 

(A.15) 

((A.12) is used) 

0 T E T"'%&. 

We thus obtain (A.13). 

T E %?&+ 0 T Ik -kT  ((A.12) is used) 

- - To-k o Ik  o T""r ((A.9) and (A.11) are used) 

0 Ik o (Tk-"r) = T"*r 

e T'-"T E (A.12) is used) (A.16) 

+ IkTk-"T E Ik'Rk = Rk ((A.12) iS used) 

+ I"T E '& ((A.11) is used) 

+ r E I,Rk ((A.8) k used). 

We thus obtain (A.14). 
In (A.13). by substituting 0 or 1 to k, we get 

R z n  = T"% 

%+I = T"%. 

(A.17) 

(A.18) 



The bifurcation of UPO in bounded and unbounded three-disk billiards 4803 

These are the non-trivial relations used in section 2. 

n = li - j l ,  since 
The intersection of the sets 'R, and Rj includes the periodic points with the period 

T E Ri n Rj s. Iir = T and I~T = r 

e I~T = I,T 

e T i  o IOT = T j  o lor 

e Io o T'-j o lor = T 

T ~ - ~ T  = T 

e T : a periodic point of the period li - j l .  

(A.19) 

Therefore, we can determine the location of various periodic orbits by calculating the 
intersection Ri n ICj for i, j E Z, However, we note that some periodic orbits cannot 
be captured by this method. 
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